

บทคัดย่อ

โครงการเทคโนโลยีอัจฉริยะเสริมสร้างความมั่นคงด้านน้ำ-สิ่งแวดล้อม-อาหาร สนับสนุนโครงการพัฒนาพื้นที่สูงแบบโครงการหลวง ปีงบประมาณ พ.ศ. 2567 มีวัตถุประสงค์เพื่อเสริมสร้างความมั่นคงด้าน-สิ่งแวดล้อม-อาหาร ควบคู่กับเพิ่มมูลค่าของผลผลิต โดยประยุกต์ใช้แนวคิด Water-Environment-Food Nexus และพัฒนาต้นแบบการจัดการน้ำในแปลงเกษตรอย่างมีประสิทธิภาพและครบวงจร ด้วยการประยุกต์ใช้เทคโนโลยีอัจฉริยะ (smart technology)

เทคโนโลยีอัจฉริยะเพื่อจัดการน้ำในแปลงเกษตรต้นแบบ ทดลองติดตั้งอยู่ในโรงเรือนของเกษตรกร ต้นแบบในโครงการพัฒนาพื้นที่สูงแบบโครงการหลวงแม่จริม ตำบลแม่จริม อำเภอแม่จริม จังหวัดน่าน เป็นการนำเทคโนโลยี IoT มาใช้กับโรงเรือนเกษตรเพื่อสร้างระบบจ่ายน้ำอัจฉริยะ ด้วยเทคโนโลยีเซ็นเซอร์ ขนาดเล็กพร้อมระบบควบคุมไมโครคอนโทรลเลอร์ ระบบจ่ายน้ำอัจฉริยะสั่งการผ่านหน้าจอสัมผัสของตู้ควบคุม องค์ประกอบหลัก ประกอบด้วย (1) ชุดโซล่าเซลล์สำหรับผลิตกระแสไฟฟ้าและแบตเตอรี่ (2) ชุดตรวจอุณหภูมิ ความชื้น และความชื้นแสลงในโรงเรือน (3) เซ็นเซอร์ตรวจความชื้นดิน (4) ชุดตรวจอัตราการไหลของน้ำ ultrasonic flow sensor (5) ชุดวัดความชื้นในน้ำไฟฟ้า เป็นชุดควบคุมการเปิด-ปิดวาล์ว ของท่อน้ำที่ติดตั้งไว้ควบคุมการจ่ายน้ำเข้าสู่แปลง (6) กล้องวงจรปิด สำหรับติดตามสถานการณ์ (7) ระบบสื่อสารไร้สาย ใช้เร้าเตอร์ภายนอกติดตั้งบนเสาร่วมกับกล้องวงจรปิด รองรับเทคโนโลยี 4G (8) ชุดควบคุมอิเล็กทรอนิกส์และไมโครคอนโทรลเลอร์

การแสดงข้อมูลผลการตรวจวัดดูตามเวลาจริงได้ผ่านหน้าจอสัมผัสที่ตู้ควบคุม หรือดูผ่านโทรศัพท์เคลื่อนที่ที่ได้ในเวลาเดียวกัน ปริมาณการใช้น้ำแสดงผลในรูปกราฟของอนุกรมเวลา ทำให้ทราบทั้งปริมาณและช่วงเวลาที่มีการเปิดใช้น้ำของแปลง รวมถึงข้อมูลปริมาณน้ำสะสม ปริมาณการใช้น้ำรายวัน รายเดือน ข้อมูลความชื้นในดินมีข้อมูลตามเวลาจริงแยกเป็นแต่ละแปลงย่อยในรูปแบบกราฟอนุกรมเวลา สามารถบันทึกเป็นไฟล์เพื่อการใช้งานได้ในรูปแบบ pdf., xls., png จากการทดสอบการทำงานของต้นแบบ พบร้า สามารถตรวจวัดและแสดงผลได้สมบูรณ์

การประเมิน water footprint และ carbon footprint ของผักสดอินทรีย์ของเกษตรกรในพื้นที่ส่งเสริมของโครงการพัฒนาพื้นที่สูงแบบโครงการหลวงบ่อเกลือ จังหวัดน่าน มีค่า water footprint ในช่วงกว้าง 23.5 - 905.4 ลิตรต่อกิโลกรัมของผัก เรียงลำดับด้วยค่าเฉลี่ย water footprint จากน้อยสุดไปมากสุด คือ มะเขือเทศเชอรี่ < พักทองบัดเตอร์นัท < มะเขือเทศโอมัส < ผักกาดขาว < สลัดกรีนอีค < สลัดเรดอีค < ผักกาดขาว ส่วน carbon footprint ของผักอินทรีย์ พบร้า มีค่าในช่วงกว้างระหว่าง 0.03 – 3.39 กิโลกรัม แก๊สคาร์บอนไดออกไซด์เที่ยงเท่าต่อ กิโลกรัมของผักอินทรีย์

สำหรับการประเมิน water footprint และ carbon footprint ของการผลิตกาแฟบ้านห้วยโภน พบร้า water footprint มีค่าในช่วง 52.56 - 62.34 ลูกบาศก์เมตรต่อกิโลกรัมสารกาแฟ ส่วน carbon footprint ที่ประเมินด้วยโปรแกรม CCaLC2 เวอร์ชัน 1.7 มีค่ารวม 7.236 กิโลกรัมแก๊สคาร์บอนไดออกไซด์ เที่ยบเท่าต่อ กิโลกรัมสารกาแฟ โดยมีสัดส่วนของ carbon footprint เรียงลำดับร้อยละจากมากไปน้อยคือ เพาบลูก > สีผลกาแฟ > คั่วและบดกาแฟ > เพากล้า > บรรจุภัณฑ์ > ตากและสีเมล็ดกาแฟ > ล้างผลกาแฟ > ล้างเมือกเมล็ดกาแฟ > ขันส่ง) > หมักเมล็ดกาแฟ > เก็บเกี่ยว

Abstract

The project on smart technology and solutions to enhance water-environment-food in Highland Development Project Using the Royal Project System, aims to enhance the security of water-environment-food along with value-added products based on the nexus of these components. By applying the Water-Environment-Food Nexus concept and developing a prototype for efficient and comprehensive water management in agricultural plots through the application of smart technology.

A prototype of smart technology for water management in agricultural plots has been installed in a model farmer's greenhouse in the Highland Development Project Using the Royal Project System, Mae Charim, Mae Charim District, Nan Province. It is the application of IoT technology to agricultural greenhouses to create an intelligent water supply system using small sensor technology and a microcontroller control system. The intelligent water supply system is controlled via the touch screen of the control cabinet. The main components consist of (1) Solar cell set for generating electricity and a battery, (2) Set for measuring temperature, humidity and light intensity in the greenhouse, (3) Soil moisture sensors, (4) Ultrasonic flow sensor water flow rate measurement set, (5) Electric water supply valve set is a set to control the opening and closing of the valve of the water pipe installed to control the water supply into the plot, (6) CCTV camera for monitoring the situation, (7) Wireless communication system using an external router installed on a pole together with CCTV cameras, supporting 4G technology, (8) Electronic control unit and microcontroller

The display of measurement results can be viewed in real time via the touch screen on the control cabinet or viewed on a mobile phone at the same time. The amount of water used is displayed in a time series graph, making it possible to know both the amount and the time period when water was used in the plot. Including accumulated water volume data, daily and monthly water usage, soil moisture data are available in real time, separated into each sub-plot in time series graph format, which can be saved as a file for use in pdf, xls, png formats. From the prototype's performance testing, it was found that the measurement and display results were complete.

The assessment of water footprint and carbon footprint of organic salad vegetables of farmers in the promotion area of the Royal Project Bo Kluea Highland Development Project, Nan Province, showed a wide range of water footprint values of 23.5 - 905.4 liters per kilogram of vegetables. In order of average water footprint from smallest to largest: Cherry Tomatoes < Butternut Squash < Thomas Tomatoes < Chinese Cabbage < Green Oak Salad < Red Oak Salad < Chinese Cabbage. The carbon footprint of organic vegetables was found to range between 0.03 and 3.39 kilograms of carbon dioxide equivalent per kilogram of organic vegetables.

For the assessment of water footprint and carbon footprint of Ban Huai Thon coffee production, it was found that the water footprint was in the range of 52.56 - 62.34 cubic meters per kilogram of coffee. The carbon footprint estimated using CCaLC2 version 1.7 was 7.236 kilograms of carbon dioxide equivalent per kilogram of coffee, with the carbon footprint proportions ranked from highest to lowest in percentage as follows: Cultivation > Coffee coloring > Roasting and grinding coffee > Seedling cultivation > Packaging > Drying and coloring coffee beans > Washing coffee beans > Washing coffee bean mucilage > Transportation > Fermenting coffee beans > Harvesting.