

บทคัดย่อ

โครงการเทคโนโลยีอัจฉริยะติดตามสถานการณ์คุณภาพน้ำและปริมาณน้ำต้นทุน ปีงบประมาณ พ.ศ. 2567 มีวัตถุประสงค์เพื่อ (1) ออกแบบ พัฒนาเทคโนโลยีอัจฉริยะ/โซลูชันติดตามสถานการณ์คุณภาพน้ำและปริมาณน้ำต้นทุน (2) ออกแบบ พัฒนาเทคโนโลยีอัจฉริยะ/โซลูชันติดตามการกระจายน้ำจากแหล่งน้ำต้นทุน (3) เพิ่มประสิทธิภาพระบบกระจายน้ำของกรมทรัพยากรน้ำ ให้สามารถติดตามการกระจายน้ำจากแหล่งน้ำต้นทุนให้มีคุณภาพน้ำเหมาะสมสมต่อการนำไปใช้ประโยชน์ และสามารถติดตามระดับน้ำซึ่งสะท้อนถึงปริมาณน้ำต้นทุนที่มีอยู่ ด้วยการประยุกต์ใช้เทคโนโลยีเซนเซอร์ขนาดเล็ก ร่วมกับเทคโนโลยี IoT สามารถแสดงผลการตรวจวัดและเรียกดูข้อมูลได้บนโทรศัพท์เคลื่อนที่และคอมพิวเตอร์ โดยทดลองติดตั้งต้นแบบเทคโนโลยีฯ ในพื้นที่โครงการก่อสร้างระบบกระจายน้ำด้วยพลังงานแสงอาทิตย์ บึงพระ อำเภอโขคชัย จังหวัดนครราชสีมา เกิดผลผลิตเป็นต้นแบบเทคโนโลยี จำนวน 3 ต้นแบบ คือ (1) ต้นแบบที่นุ่มนวลตรวจวัดคุณภาพน้ำและระดับน้ำพลังงานแสงอาทิตย์ (2) ต้นแบบที่นุ่มนวลตรวจวัดคุณภาพน้ำและระดับน้ำอัตโนมัติแบบเคลื่อนที่ได้ และ (3) ต้นแบบ smart meters ตรวจวัดอัตราการกระจายน้ำในระบบกระบวนการพลังงานแสงอาทิตย์

ต้นแบบที่นุ่มนวลตรวจวัดคุณภาพน้ำและระดับน้ำพลังงานแสงอาทิตย์ ออกแบบให้อุปกรณ์ทั้งหมดติดตั้งบนที่นุ่มนวลอยู่ในโครงสร้างรูปทรงคล้ายตัว H ซึ่งถูกออกแบบและนำไบโพลีดีนรูปด้วยเครื่องพิมพ์สามมิติ ใช้ polyurethane foam ชนิดหนานบรรจุภายในช่องให้การลอกน้ำได้ องค์ประกอบของต้นแบบมีดังนี้ (1) ที่นุ่มนวล ขนาด 0.52 ม. x 0.66 ม. x 0.22 เมตร (กว้าง x ยาว x สูง) (2) เซนเซอร์ตรวจวัดคุณภาพน้ำ 3 พารามิเตอร์ ได้แก่ พีเอช ความนำไฟฟ้า ปริมาณออกซิเจนละลายน้ำ (3) เซนเซอร์วัดระดับน้ำแบบใช้คัลลีนเสียง (4) แผงโซลาร์เซลล์ ชุดควบคุมการชาร์จไฟฟ้า และแบตเตอรี่ลิเทียมไอโอน (5) ไฟสัญญาณแจ้งเตือนสถานการทำงาน (6) กล้องควบคุม การแสดงข้อมูลจากการตรวจวัด

ต้นแบบที่นุ่มนวลตรวจวัดคุณภาพน้ำและระดับน้ำอัตโนมัติแบบเคลื่อนที่ได้ มีขนาดกะทัดรัด องค์ประกอบของต้นแบบมีดังนี้ (1) ที่นุ่มนวล มีขนาด 0.46 ม. x 0.75 X 0.21 เมตร (กว้าง x ยาว x สูง) (2) เซนเซอร์ตรวจวัดคุณภาพน้ำ 3 พารามิเตอร์ ได้แก่ พีเอช ความนำไฟฟ้า ปริมาณออกซิเจนละลายน้ำ (3) เซนเซอร์วัดระดับน้ำแบบใช้คัลลีนเสียง (4) แผงโซลาร์เซลล์ ชุดควบคุมการชาร์จไฟฟ้า และแบตเตอรี่ลิเทียมไอโอน (5) ใบพัดใต้น้ำ 2 ตัว และมอเตอร์ควบคุมความเร็ว (6) ปั๊มดูดน้ำสำหรับเก็บตัวอย่างน้ำ (7) รีโมทคอนโทรล (8) กล้องควบคุม

ระบบ smart meter ตรวจวัดอัตราการไหลของน้ำจากระบบกระบวนการพลังแสงอาทิตย์บึงพระ สำหรับตรวจวัดสมดุลของน้ำเข้าและน้ำออกของระบบกระบวนการน้ำ โดยใช้ชุด smart meter แบบ ultrasonic flow sensor ทำงานด้วยพลังงานจากแสงอาทิตย์และมีแบตเตอรี่เก็บกักพลังงาน ควบคุมด้วยวงจรอิเล็กทรอนิกส์ที่ออกแบบขึ้นมาใช้กับการควบคุมการชาร์จพลังงาน การทำงานของ smart meter ส่วนการรับ-ส่งข้อมูลมี microcontroller เป็นส่วนควบคุมการทำงานหลัก

การทดสอบระบบการทำงานและการส่งข้อมูลของต้นแบบทั้ง 3 ต้นแบบ ซึ่งเริ่มทดสอบภายหลังจากติดตั้งต้นแบบและพัฒนาส่วนแสดงผลแล้วเสร็จจนถึงปัจจุบัน พบว่า ทั้ง 3 ต้นแบบ สามารถตรวจวัดและส่งข้อมูลได้อย่างมีประสิทธิภาพ

Abstract

A research project on smart technology and solutions for surveillance of water quality and water budget was conducted in the 2024 fiscal year. The project aims to (1) Design and develop smart technology/solutions to monitor water quality and water quantity situation. (2) Design and develop smart technology/solutions to monitor water distribution from water sources. (3) Increase efficiency of the water distribution system of the Department of Water Resources. To be able to respond to the monitoring of water resources to ensure that the water quality is suitable for use and to be able to monitor water levels which reflect the amount of water resources available by applying small sensor technology together with IoT technology. The measurement results can be displayed and data can be retrieved on mobile phones and computers. The technology prototype was installed in the construction area of the Bueng Phra solar water distribution system, Chok Chai District, Nakhon Ratchasima Province. The results were three prototypes of technology: (1) prototype of a solar-powered water quality and water level measuring buoy, (2) prototype of a mobile automatic water quality and water level measuring buoy, and (3) Smart meter prototype to measure water distribution rate in solar water distribution system.

The prototype solar-powered water quality and water level monitoring buoy is designed with all equipment mounted on a floating buoy with an H-shaped structure, which is designed and 3D-printed. Thick polyurethane foam is used inside to ensure good buoyancy. The components of the prototype are as follows: (1) Floating buoy, size 0.52 m x 0.66 m x 0.22 m (width x length x height); (2) Sensors to measure three water quality parameters: pH, conductivity, dissolved oxygen; (3) Ultrasonic water level sensor; (4) Solar panel, charging controller and lithium-ion battery; (5) Working status indicator light; (6) Control box, display of measurement data.

The prototype of a compact, mobile, automatic water quality and water level measuring buoy has the following components: (1) a floating buoy with dimensions of 0.46 m x 0.75 x 0.21 m (width x length x height); (2) a sensor to measure 3 water quality parameters: pH, conductivity, dissolved oxygen; (3) Ultrasonic water level sensor; (4) Solar panel, charging controller and lithium-ion battery; (5) Two underwater propellers and speed control motor; (6) Water pump for collecting water samples; (7) Remote control; (8) Control box.

Smart meter system measures water flow rate from Bueng Phra solar water distribution system to measure the balance of water in and out of the water distribution system by using smart meter set with ultrasonic flow sensor that works with solar energy and has a battery to store energy. It is controlled by a specially designed electronic circuit for controlling the charging of energy, smart meter operation, data transmission and reception are controlled by microcontroller.

Testing of the operating system and data transmission of the three prototypes, which began after the prototypes were installed and the display development was completed, has found that all three prototypes can measure and transmit data efficiently.