

บทคัดย่อ

โครงการพัฒนาสถานีเตือนภัยล่วงหน้าน้ำป่าไหลหลาก-ดินถล่มพังงานต้ำในพื้นที่สูง ปีงบประมาณ พ.ศ. 2567 มีวัตถุประสงค์เพื่อ (1) ออกแบบ พัฒนาสถานีเตือนภัยแบบใช้พลังงานต้ำสำหรับพื้นที่สูง เริ่มจากการออกแบบ สร้างต้นแบบเทคโนโลยี จนออกแบบเป็นผลิตภัณฑ์ที่ใช้งานจริงได้แพร่หลาย (2) พัฒนา ประยุกต์ใช้เทคโนโลยี IoT และ AI เพื่อเพิ่มประสิทธิภาพในการประมวลผล และแจ้งเตือนภัย (3) เพิ่มประสิทธิภาพของระบบเตือนภัยล่วงหน้าหลัก-ดินถล่มในพื้นที่ลาดชันและที่ราบเชิงเขาของกรมทรัพยากรน้ำ ดำเนินการทดลองติดตั้งต้นแบบเทคโนโลยี จำนวน 2 พื้นที่ ดังนี้ พื้นที่นำร่องที่ 1 โครงการพัฒนาพื้นที่สูงแบบโครงการหลวงชุมชนสถาน ตำบลสันทะ อำเภอนา้อย จังหวัดน่าน พื้นที่นำร่องที่ 2 โครงการพัฒนาพื้นที่สูงแบบโครงการหลวงบ่อเกลือ (บ้านห้วยโนน) ตำบลคงพญา อำเภอปอเกลือ จังหวัดน่าน

ต้นแบบสถานีเตือนภัยล่วงหน้าน้ำป่าไหลหลาก-ดินถล่ม เป็นการนำเทคโนโลยีตรวจวัดปริมาณฝุ่นชนิดเรเดาร์ ซึ่งเป็นเซ็นเซอร์ชนิดใหม่มาเป็นเซ็นเซอร์ทางเลือก ร่วมกับเซ็นเซอร์ชนิดถ่วงกระดก (tipping bucket) ใช้พลังงานแสงอาทิตย์เป็นระบบพลังงานหมุนเวียนช่วยให้ระบบทำงานด้วยแบตเตอรี่ใช้พลังงานต้ำเสริมด้วยการตรวจวัดปริมาณฝุ่นละอองขนาดนาดเล็ก ทั้งฝุ่นละออง PM2.5 และ PM10 เพื่อช่วยสนับสนุนข้อมูลการตรวจวัดคุณภาพอากาศในพื้นที่ห่างเมือง ระบบสามารถส่งข้อมูลผ่านการสื่อสารแบบไร้สาย บันทึกผ่านระบบคลาวด์ แสดงผลการตรวจวัดบน smartphone อาทิ ปริมาณฝุ่นอุณหภูมิ ความชื้น บรรยากาศ ความชื้นดิน มีการติดตั้งกล้องบันทึกภาพนิ่งและภาพเคลื่อนไหวที่ควบคุมได้จากระยะไกล เพื่อใช้ยืนยันเหตุการณ์ที่เกิดขึ้น

ข้อมูลการตรวจวัดจากเซ็นเซอร์ทุกชนิด อาทิ ข้อมูลปริมาณฝุ่น ความชื้นดิน ความชื้นบรรยากาศ อุณหภูมิบรรยากาศ ปริมาณ PM2.5 PM10 ภาพจากกล้องบันทึก มีการส่งผ่านเข้าสู่โมดูลของชุดควบคุมที่เชื่อมต่อกับเครือข่ายโทรศัพท์เคลื่อนที่ในระบบ GSM ข้อมูลส่งเข้าสู่เซิฟเวอร์ในระบบ cloud ข้อมูลดังกล่าวสามารถแสดงผลผ่านโทรศัพท์มือถือและคอมพิวเตอร์ได้ตามเวลาจริง (real-time) รวมทั้งเรียกดูข้อมูลย้อนหลังได้ 30 วัน

การทดสอบระบบการทำงานของต้นแบบสถานีเตือนภัยฯ ซึ่งเป็นการทดสอบการทำงานและการส่งข้อมูลของอุปกรณ์ตรวจวัด ได้แก่ ข้อมูลปริมาณฝุ่นจากเรเดาร์ ความชื้นในดิน ความชื้นบรรยากาศ ปริมาณฝุ่นละอองขนาดนาดเล็ก PM_{2.5} และ PM₁₀ อุณหภูมิบรรยากาศ โดยเริ่มทดสอบภายหลังจากการติดตั้งต้นแบบ และพัฒนาปรับปรุงรายละเอียดของส่วนแสดงผลแล้วเสร็จ ตั้งแต่เดือนมิถุนายน 2567 ถึง เดือนกันยายน 2568 รวม 15 เดือน ผลการทดสอบ พบว่าต้นแบบสถานีเตือนภัยที่ติดตั้ง ทั้ง 2 แห่ง สามารถตรวจวัด ส่งข้อมูลและแจ้งเตือนได้อย่างมีประสิทธิภาพ

Abstract

In the 2024 fiscal year, the development of low power consumption of early warning system for flash floods and landslides in the highland had the following objectives: (1) design and install a pilot early warning system (EWS) in the highland starting from creating prototypes of technology until it becomes a product that can be used widely, (2) develop and apply IoT and AI technology to increase efficiency in alerting, and (3) increase the efficiency of the flood-landslide early warning system in slopes and hillside areas operated by the Department of Water Resources. This project was operated in two pilot areas, the Highland development project using royal project system, Khun Sathan, Santha Subdistrict, Na Noi District, Nan Province. Pilot Area 2: the Highland development project using royal project system, Bo Kluea, Dong Phaya Subdistrict, Bo Kluea District, Nan Province.

The pilot early warning system for flash floods and landslides in the highland uses radar technology for rain measurement, which is a new instrument as an alternative for measuring rainfall. Combined with a tipping bucket type sensor and an optical rain sensor. A solar panel and battery are the sources of the renewable energy used by these instruments. A PM_{2.5} and PM₁₀ sensor is installed to provide support for air quality monitoring in these remote locations. Measured data are transmitted via wireless technology and sent to a cloud server. Data can be retrieved and displayed on smartphones and computers, e.g., rainfall, atmospheric temperature and humidity, and soil moisture. An IP camera is incorporated into this pitot equipment to record pictures and videos. The camera is capable of remote control via a smartphone to monitor the operation.

Measurement data from all types of sensors, such as rainfall data, soil moisture, atmospheric humidity, atmospheric temperature, PM2.5, PM10, and images from recording cameras, is transmitted to the control module connected to the GSM mobile network. Data is sent to a cloud server, which can be displayed on mobile phones and computers in real time, and can also be viewed for up to 30 days.

Testing the operation of the prototype warning station system, which is a test of the operation and data transmission of measuring devices, including rainfall data from radar, soil moisture, atmospheric humidity, PM2.5 and PM10 dust particles, and atmospheric temperature. Testing will begin after the prototype is installed and the display details are developed and improved from June 2024 to September 2025, a total of 15 months. The test results showed that the two prototypes installed at both locations were able to measure, transmit and issue warnings effectively.